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I, In supersonic flow past a delta wing the flow behind the shock wave can be split 
into the inviscid region and the boundary layer if the Reynolds number is sufficiently large. 
The flow conditions around a delta wind at an angle of attack are shown in Fig. I [I-5] (on 
a sphere with center at the vertex of the plate). The classification is made according to 
the nature of the flow in the neighborhood of the leading edges (conditions A and B) as well 
as according to the presence and location of stagnation streamlines at the plate surface 
(conditions I-3). 

A corresponds to a supersonic leading edge, while B is subsonic. In this case the lead- 
ing-edge shock is attached to the vertex of the wing and the inviscid flow is conical. There 
is also another case when the leading-edge shock moves away from the vertex and the flow be- 
comes significantly three dimensional. However, we shall restrict our discussions to only 
conical ~lows. 

Thd dividing streamline surface approaches the leading edge under conditions 1, whether 
the leading edges are supersonic or subsonic. The transverse velocity component is away from 
the leading edges in the plane of symmetry where the windward and leeward sides of the wing 
are located along one streamline. With an increase in angle of attack the conical dividing 
stream surface rotates towards the plane of symmetry. Starting froma certainmoment when it 
approaches the wind orthogonally, further increase in the angle of attack leads to its dis- 
placement in the direction of the plane of symmetry (condition 2), while the approach angle 
to the wing, as shown in [6], remains normal. In this case there are two separation stream- 
lines located on the surface of the wing. Starting from a certain angle of attack the sepa- 
ration streamlines merge with the stagnation streamline, and then the case 3 is realized with 
one separation streamline from the windward side. 

Strictly speaking, conical flow under the above conditions can occur only when the in- 
fluence of the trailing edge does not propagate upstream. This can be realized when the 
velocity component along the conical surface is supersonic. Otherwise the conical flow can 
be considered only as an approximation in the neighborhood of the vertex. It has been shown 
[7] that for thin slender wings the condition 3 in the above sense can be realized up to an 
angle of attack of the order of 90 ~ , when the flow from the windward side along the conical 
surface is directed towards the vertex. 

If the angle between the wing leading edge and the plane of symmetry is greater than the 
free-stream Mach angle, then with an increase in the angle of attack from zero to the limit- 
ing case the wing undergoes all conditions shown in Fig. I. Otherwise, all flow situations 
except AI are realized. 

Inviscid flow past a delta wing under flow condition AI was studied in [8], where de- 
tailed tables of the flow field from the windward and leeward sides are given for a wide range 
of Mach numbers and sweep. In [3, 5, 9] computations have been carried out for conical flow 
past a wing and cambered wings under conditions BI and B2. In order to compute the boundary 
layer on the wing it is necessary to know the pressure distribution at its outer boundary, 
one velocity component (preferably the transverse component), and the value of entropy func- 
tion. Unfortunately, it is not possible to use the results in these papers to compute the 
boundary layer. The inviscid flow field past a delta wing for condition B3 are obtained in 
[10, 11]. 

In the case of conical flow, three-dimensional boundary-layer equations allow similarity 
solution with two independent variables, one of which is the normal based on the square root 
of the distance along the generatrix [12]. In similarity variables, the boundary layer may 
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be computed using a marching technique in the direction of velocity components normal to the 
generatrix. This means that under condition 3 the computation should start from the plane 
of symmetry. 

The laminar boundary layer on the windward side of a delta wing was first studied in [4], 
where the method of integral relations was used to compute the flow under conditions 3. The 
initial conditions in the plane of symmetry were obtained from the solution of the very equa- 
tions written in this plane. The outer boundary conditions for the boundary layer were taken 
from [10]. 

In the case 2, b0undary-layer equations in similarity variables on the windward side 
should be solved from separating streamlines on both sides. Similar flow conditions were 
considered for an elliptic cone at small angles of attack [13, 14]. 

In [15-17] hypersonic boundary layers on delta wings were considered. The inverse effect 
of the boundary layer on the inviscid flow was studied using the pressure distribution com- 
puted from "tangential wedge" equations. Solutions have been obtained for boundary-layer 
equations with weak and strong interactions. Results show that reverse flow in the transverse 
direction could arise in the flow past delta wing under the given conditions, i.e., there is 
a transverse boundary-layer separation [16]. 

The present paper discusses a similar laminar boundary layer on the windward side of a 
delta wing under conditions At. From the point of view of the boundary layer, there is no 
difference between the nature of flow under conditions AI and BI. In both cases the velocity 
component normal to the generatrix at the outer edge of the boundary layer is directed from 
the leading edges towards the plane of symmetry. 

2. The laminar boundary layer on a flat delta wing with a leading edge sweep X is con- 
sidered. The free-stream velocity vector U~ lies in the plane of symmetry of the wing and 
is at an angle of attack ~ to its surface. A cylindrical coordinate system (r, 8, z) is used, 
where r is the distance from the vertex of the wing along its surface, ~ is the angle mea- 
sured from the plane of symmetry, and z is the distance along the normal to the wing. 

Compressible boundary-layer equations for delta wing are taken from [18]. These equa- 
tions allowa similarity solution in two variables 8 and q = z/~rr [12, 6] with conical outer 
flow and isothermal wing or in the case of an insulated wall; r and z are nondimensionalized 
with respect to certain reference length. The system of equations in these variables is given 
in [6]. It is evolutionary and can be solved using a marching technique along the variable 8, 
with the marching direction coinciding with the direction of the transverse velocity compo- 
nent v. In the present flow condition AI the flow is from the leading edges to the plane of 
symmetry, and therefore, initial conditions are specified near the leading edges. 

Similarity variables ~ = 80 -- 8, q = z//r(80 8) are introduced, where 00 is leading 
edge angle of the wing (80 = 90 - X). In the neighborhood of the leading edge the variable q 
is like the 31asius variable and hence the boundary-layer equations in these variables do not 
have singularity at the leading edge. In order to reduce the gradients of all the desired 
functions in q, a logarithmic stretching has been carried out [12, 6] 

= ](,]/L) = In (t + ~l/e2L)/ln (i + t/%), 

where L = L(u) is the scaled boundary layer thickness and E2 is the stretching parameter. 
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Thus the system of laminar boundary layer equations in variables w, ~ has the form 

f' OJ ( 3 c~9v~ 1 [ '  
L o~ + (o T P~ - ~ i - ~  pv - ~ co ~-,ov.V = o .  

.,,0o ( or) 
J - - f f ~  -}-(Opt; U - - - ~  - -  L O+t L Oil =(OPeVe \Ue- -~ '~] ,  

1" or ow,pt; aT t t '  o k -L- ~ = -- r ~ -  § M~ (? -- t) ~t + 
c ~ J  --ff O-~ - - '  Oo) . Pr Z O~ [\0~ ] kO~ ] J' 

.1_ 
P = ~-~T P T. 

The p r o b l e m  was s o l v e d  w i t h  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s :  

co = O: u = Uo(U,  t; = t;o(D, r = T o ( D ,  

~---- 0: u ---- t; -= ] = O, T . = , T w ,  ( 2 . 2 )  

= l :  u = u~((o),  v = v~((o), r = T~((o),  p = p ~ ( ~ ) .  

Here mass flow J and function N(w, 6) have been introduced: 

s = p V ;  - 0.5n~ + Y(o T nt; + w V 7  + 0-5on~, 

0q = L ((o) e e exp (~ In (1 + i/%)) In (t + t/e2). N = ~  

P r i m e s  d e n o t e  d i f f e r e n t i a t i o n  o f  f u n c t i o n s  w i t h  r e s p e c t  t o  t h e i r  own a r g u m e n t .  V e l o c i t y  com-  
p o n e n t s  u and v are nondimensionalized with respect to the free stream velocity U~o, pressure 
p is with respect to twice the dynamic 2 �9 �9 �9 pressure pooUoo, dynamlc vlscoslty ~, heat conductivity 
k, specific heat at constant pressure Cp, density p, and temperature T are nondimensionalized 

with respect to their free-stream values. 

Initial profiles u0(~), v0(~), and T0(t) were determined from the solution of ordinary 
differential equations obtained from Eqs. (2. I) as w § 0 with the assumption that all func- 
tions and their derivatives are bounded [19]. Pressure distribution Pe and transverse veloc- 
ity components were specified in Cartesian coordinates at the outer edge of the boundary layer 
from the computations of the inviscid flow [8]. The parameters Ue, Ve, and T e were computed 
using these data and also Bernoulli's equation and entropy. 

3. Equations of motion and energy from (2. I) may be written in the general form 

o! o/ e +-- c - ~  + d = O ,  (3 1)  a-g-~ + b - ~ - t -  o~ 

where f denotes u, v, or T. In order to solve equations of the type (3.1), a two-layer, 
implicit scheme with weighting ~20] was used. Viscosity and heat conductivity were approxi- 
mated by the power law ~ = T ~ . The nonlinearity of the system (3.1) requires an itera- 
tional approach which makes it possible to bring the problem within one iteration to scalar 
shooting method for difference boundary-value problems, approximating the equations of motion 
and energy. The coefficients and arbitrary terms in (3.1) at each iteration were computed 
from the values of parameters obtained in the previous iteration. Mass flow rate J was de- 
termined from the continuity equation. Iterations were continued until the functions at each 
point converged within specified accuracy. 

Initial profiles u0(~), v0(~), T0(G) were obtained from the solution of ordinary differ- 
ential equations at ~ = 0, written in difference form. Subsequently the two-dimensional dif- 
ference equations were solved up to the plane of symmetry [19]. 

Velocity and temperature profiles in the boundary layer on the windward side of the wing 
were obtained as a result of the solution of the problem (2.1) and (2.2). They are used to 
compute the local skin-friction coefficients in the streamwise cfl and transverse cf2 direc- 
tions, local heat transfer coefficient St (Stanton number), and the absolute value of the re- 
sultant local skin-friction coefficient cf: 

Ou 2 Ov 
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c t ~ / c ) ~ + c  ~ or / = I2, St = k ~- ,=~ p~U~ (h~ -- hw), (3.2) 

where h is the total enthalpy of the flow. 

For the ease of computation and graphical representation, local similarity parameters 
depending only on the variable w were used: 

* V~R---~, * V~R--~,. c~ - c! ~ f R - ~ ,  St* =- St vrRer~,, c j l  = e l l  c12 ~ e l2  . 

w h e r e  Re r i s  t h e  l o c a l  R e y n o l d s  n u m b e r  b a s e d  o n  f r e e - s t r e a m  p a r a m e t e r s  a n d  t h e  d i s t a n c e  r 
from the wing vertex. 

4. Computations of laminar boundary-layer parameters on the windward side of the delta 
wing were carried out for all variants given in [8] with supersonic leading edges. The range 
in variation of sweep was 45-75 ~ , in angle of attack 5-15 ~ , and in Mach number 2-10. Com- 
puted results for the flow fields, with the ratio of well enthalpy to free-stream enthalpy 
Hw = 0.1, are given in the form of a tables in [21]. In all the cases the number of steps 
along the coordinate w was 80 and along ~, 50. It should be mentioned that there was no 
transverse separation of the boundary layer. 

As an example, the variation of local similarity coefficients of skin friction c~ and 
St* is shown in Fig. 2 as a function of the angle 0 with X = 45~ Moo = 3.0, H w = 0.1, and 

= 15, 10, and 5 ~ (curves I-3, respectively). The nature of these curves significantly dif- 
fers from that given in [4] for the condition B3. In the case AI the inviscid flow past the 
leading edge is similar to the flow past a tapered wedge [I]. Hence in the neighborhood of 
the leading edge, the flow parameters outside the boundary layer are constant right up to the 
Mach cone of the disturbed flow along which the uniform flow becomes conical. In the uniform 
external flow the parameters c~ and St* are constant, and during the transition through the 
Mach cone their values increase. The Mach cone is traced by the curve with triangles. A 
sharp decrease in c~ and St* near the plane of symmetry was discussed in [19]. 

With an increase in the angle of attack, the nature of curves c; and St* changes slowly 
and the transition zone from constant values is somewhat displaced. It is possible to say 
that the dependence on the angle of attack is practically linear. This is observed well in 
Fig 3, where the values of c* and St* near the leading edge are shown as a function of angle 

. f 

of attack with ~ = 45 ~ , H w = 0.1, and Moo = 10, 6, 4, and 3 (curves I-4), circles indicate val- 
ues of c~ and St* corresponding to Moo = 2, and dashes indicate extrapolated curves. The prac- 
tically linear dependence on angle of attack and free-stream Mach number is clearly seen. 
Hence c~ and St* may be approximately described by the following interpolation equations near 

the leading edges with X = 45~ and H w = 0.1: 

c~ = 0 .6 i  § (0.0089 M~ - -  0 ,0i5)  (a - -  2 .6) ,  ( 4 . 1 )  

St* = 0.34 + (0.0043 M= - -  0 .0004)(~ - -  3 . 4 ) ,  

where the angle of attack is given in degrees. Here the error in c~ does not exceed 1.5% and 
for St* -- 2% in the range of Mach numbers 3-10 and angles of attack 5-15~ 

As expected, the region of uniform flow increases with Mach number with the reduction 
in Mach angle of the disturbed flow. Consequently, the region with constant c~ and St* also 

increases. 

Computations were carried out for the boundary layer at zero angle of attack. The param- 
eters c~ and St* in this case depend on ~ as (u/sin~)i/2 which agrees well with the results 
obtained] Table I gives values of c~ and St* near the leading edge with X = 45~ Hw = 0.1, 
and Moo = 2, 3, 4, 6, and 10. Interpolation Eqs. (4.1) at ~ = 0 give values of c~ at Moo = 3-6 
within the specified error and when M~o = 10, lower it by 10%. The value of St* is lowered by 
the interpolation equation by 4-6% at Moo = 3-6 and by 19% at Moo = 10. 

An increase in Moo leads to a thickening of the boundary layer and hence the values of 
c~ and St* decrease somewhat for the isothermal wall, Since the computations were carried out 
for a constant ratio of wall enthalpy H w, these parameters are multiplied by the factor (I + 
(u -- I)M~/2) d, where d = 0.76 is the exponent in the relation between viscosity and tempera- 
ture. All together lead to a practically linear dependence of c~ and St* on Moo for ~ ~ 5 ~ . 
Similar influence of Moo was observed at high angles of attack [4]. However, with a decrease 
in angle of attack the dependence of boundary-layer thickness on Moo rapidly increases and 
the associated significant decrease in the velocity gradient along the normal results in in- 
verse dependence of c~ and St* on M~o at ~ = 0. 
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TABLE I 

Mo= 2 

cf 0,588 

St I 0,336 

c~ i,869 

e;  

0,567 

0,3i2 

i ,803 

0,548 

0,295 

i, 740 

6 

0,5i3 

0,270 

1,631 

iO 

0,465 

0,24i 

i,479 

0,765 

The values of c 7 and St* decrease with an increase in sweep X. A change in relative 
enthalpy of the wing surface Hw has relativel~ small effect on them. Thus an increase in H w 
from 0.05 to 0.1 resulted in a decrease in cf by not more than 1.5% and St* by 2.5%, and 
when H w is increased by an order of magnitude c~ changed by not more than 7% and St* by 20%. 

In addition to local parameters, the integral similarity coefficients of skin friction 
c~ and heat flux Q~ along the windward side of the wing were also computed: 

, X F ~ - ~ L  ~176  * 4 f c I cos ~ 

0 o 

O~ = q~ V~-F~ = Q V~-7~ ~ ! st* 
~o~u~ @| -h ,D S = ~ V~o r (% - ~o i cos (% - ,o) do, 

where X and Q are skin friction and heat flux to the windward side of the wing; L is the 
length of the central chord; S is the wing area; ~ is the angle of inclination of the local 
shear stress coefficient to the plane of symmetry: 

* i 
= arctg  ( c ] J c l l )  + 0 o - -  ~ .  

Figure 4 shows parameters c~ and Q~ as functions of angle of attack with X = 45~ Hw = 
0.1, and different values of M~; the numbering of curves is according to Fig. 3, circles de- 

e " * * " * note data for M~ = 2. The b havlor of c F and QT resembles the behavlor of cf and St* near 
the leading edge. Interpolation functions for X = 45~ and H w = 0.1 have also been obtained: 

c~ = i .96 + (0,029 M~ - -  0.045) (a - -  2.9), Q~ = iA3 + (0.0i5 M~ - -  0.006) (a - -  4), ( 4 . 2 )  

where the angle of attack ~ is given in degrees. The error in these equations for c~ and Q~ 
does not exceed I% in the range Moo = 3-6 and angles of attack 5-15 ~ . For Moo = 10 this error 
increases to 2 and 4%, respectively. 

Table I also gives computed results for the same variations with ~ = 0. Interpolated 
values of c~ (4.2) differ from exact by 2-3% at Moo = 3-6 and happen to be lower by 15.5% at 
Moo = 10. For the parameter QT the interpolation formula (4.2) gives lower results by 1.5, 
3, 8, and 25.5% for Moo = 3, 4, 6, and 10, respectively. 

The dependence of parameters c~ and Q~ on the sweep angle at H w = 0.1 and different Mach 
numbers is shown in Fig. 5, with numbering corresponding to Fig. 3, continuous lines for 
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= 5 ~ , dashed lines for e = 10~ the curves 3 and 4 at ~ = 5 ~ merge together. Results from 
[4] are indicated by crosses for comparison for M~o = 6, ~ = 5 ~ , H w = 0.05, and the difference 
at X = 70 is about 10%. It is seen that parameters c~ and Q~ do not depend on sweep except at 
M = 10 where the deviation does not exceed 2-3%. This means that the interpolation funCtions 
(4.2) may be used in the range of sweep angles 45-75 ~ and Ygo = 3-6, with an accuracy of 1.5% 
for c~ and 2% for Q~. When F$o = ~0 this error increases to 5 and 7%, respectively. 

The influence of wall enthalpy H w on boundary-layer parameters was explained by the fol- 
lowing variant: X = 70~ M52 = 6, and ~ = 5 ~ . Com~utations showed that in changing H w from 
0.05 to 0.1 the value of c~ decreases by I% and Q~ by 3%. However, an increase in H w by an 
order of magnitude leads to their decrease by 5 and 19%, respectively. 
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